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a b s t r a c t

The structures of the boundary layer in the problem of the torsion of a radially stratified spherical segment
(shell) with an arbitrary number of alternating hard and soft layers are investigated. It is shown that
weakly attenuating boundary-layer solutions exist. Despite the fact that a stress state, self-balanced in
the section, corresponds to these elementary solutions, they may penetrate fairly deeply and considerably
change the stress–strain state pattern far from the ends. Using an asymptotic analysis of the problem,
an applied theory of torsion is proposed which takes into account weakly attenuating boundary-layer
solutions.

© 2009 Elsevier Ltd. All rights reserved.

It was shown in Refs 1–4 that the spectrum of homogeneous solutions for laminated bodies with alternating hard and soft layers
can be divided into “lower” and “higher” parts, where a certain applied theory always corresponds to the lower part, which takes into
account a weakly attenuating boundary-layer solution. The method was extended in Ref. 5 to problems of steady torsional oscillations of a
radially laminated cylinder with alternating hard and soft layers. The spectrum of the homogeneous solutions for the vartex problem of a
triple-layered spherical shell with a soft filler was investigated in Ref. 6.

1. Formulation of the boundary-value problem for a radially non-uniform spherical layer

We will first consider the problem of the torsion of a radially non-uniform spherical layer. We will denote by V = {r ∈ [r0, r1], � ∈ [�0,
�1], � ∈ [0, 2�]} the region occupied by the shell (r, �, �) are spherical coordinates). We will assume that the shear modulus G = G(r) is an
arbitrary strictly positive integrable function.

The equilibrium equation in a spherical system of coordinates has the form7

(1.1)

where u� is a component of the displacement vector.
We will also assume that the faces are stress-free

(1.2)

while on the conical surfaces (ends)

(1.3)
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The solution will be sought in the form

(1.4)

where m(�) is the solution of the Legendre equation8

(1.5)

After substituting (1.4) into relations (1.1) and (1.2) we obtain the eigenvalue problem

(1.6)

We will introduce a Hilbert space H with scalar product

Theorem 1. The operator A: H → H is non-negative.

Proof. Consider the quadratic form of the operator A. After integration by parts and taking the conditions lrv|r=r˛ = 0 into account, we
obtain

The proof of the theorem follows from this inequality.

Corollary 1. The non-zero eigenvalues of the operator A �s > 0, �s → ∞ as S → ∞.

Corollary 2. The set of eigenfunctions {vs}∞S=0 forms an orthogonal basis of the space H,9 i.e.

(1.7)

and for all � ∈ H can be represented in the form

where � = �0 = 0, the eigenvalue of the operator A: H → H, and the eigenfunction v0(r) = r corresponds to it.

The expression

(1.8)

will be called the elementary solution. Note that

(1.9)

where P1
zs−1/2(cos �), Q 1

zs−1/2(cos �) are associated Legendre functions of the first and second kind, respectively, and As and Bs are arbitrary
constants.

The above analysis enables any solution of Eq. (1.1), which satisfies boundary conditions (1.2), to be represented in the form

(1.10)

Then the arbitrary constants in expressions (1.9) are defined when the boundary conditions are satisfied on the ends.
As an example, consider the problem with boundary conditions (1.3). From (1.8)-(1.10) we have

(1.11)
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Substituting (1.11) into condition (1.3) and multiplying scalarly by vt (t = 0, 1, . . .), and taking conditions (1.7) into account, we obtain

(1.12)

(1.13)

where

Simultaneous satisfaction of the two equalities (1.12), defining B0, is equivalent to satisfying the equilibrium condition of the shell. Note
that the torque in section � = const is defined by the expression

(1.14)

The constant � = -B0 can be regarded as the relative torsion angle, while D = 4�d0 can be regarded as the torsional rigidity.

2. Analysis of the eigenvalue problem for a radially laminated sphere

We will now analyse eigenvalue problem (1.16) for a laminated shell with alternating hard and soft layers. Suppose n = 2l -1 is the total
number of layers. We will assume that the inner and outer layers are hard. Each hard layer is given an odd number j = 1, 3, . . ., n and each
soft layer is given an even number i = 2, 4, . . ., n-1. We will assume, for simplicity, that the elastic properties in all the hard and soft layers
are the same: the shear moduli Gj = Gg and Gi = Gm. The inner radius of the k-th layer will be denoted by r0k and the outer radius will be
denoted by r1k (k = 1, 2, . . ., n).

We will introduce the following notation: v = vk if r ∈ [r0k, r1k]. If the individual layers are rigidly connected (without slippage), problem
(1.6) reduces to the following interface problem in vk

(2.1)

(2.2)

We will introduce the small parameter p = Gm/Gg as a characteristic of the relative stiffness of the layers and we will formulate the
fundamental results of an investigation of eigenvalue problem (2.1), (2.2) as p → 0.

Theorem 2. The spectrum �(p) of problem (2.1), (2.2) can be regarded as a combination of three sets

Here

1) �0(p) consists of the eigenvalue z±
0 = ±3/2;

2) �1(p) consists of 2(l-1) real eigenvalues of the form

(2.3)

where �t are non-zero eigenvalues of the homogeneous algebraic system

(2.4)
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3) �2(p) consists of 2n denumerable sets of eigenvalues of the form

(2.5)

where

and � is a parameter characterizing the thin-walled form of the shell.
Note that eigenvalues (2.5) with odd k correspond to the hard layers while those with even k correspond to the soft layers. We will

denote the set of these eigenvalues by �2, j(p), �2, i(p) respectively.
Since the quadratic forms

then �0 = 0 is an eigenvalue, to which the eigenvector X0 = (X0, . . ., X0)T corresponds, while for t = 1, . . ., l-1 we have

which corresponds to Corollary 1 (�t = 9/4 − z2
t ≈ 3p�t > 0).

If the relative thickness of the shell is small, it follows from an analysis of system (2.4) that

(2.6)

We will only give a general outline of the proof of the Theorem 2.
Eigenvalue problem (2.1), (2.2) reduces to investigating a homogeneous algebraic system with a matrix, whose elements depend analyt-

ically on the eigenvalue parameter z and linearly on the parameter p. The results formulated above were obtained by applying perturbation
theory with respect to the parameter p (Ref. 10) to this algebraic system. Here it is important to analyse the limiting problem. In this case
when p = 0 we have two limiting cases: 1) Em → 0 and the shear modulus Gg is finite, and 2) Gg → ∞ and the shear modulus Gm is finite. A
system of spherical shells (hard layers) connected to one another, the spherical surfaces of which are stress-free, corresponds to the first
limiting case. The spectrum of limit problem will be a combination of sets of eigenvalues of the eigenvalue problems corresponding to the
individual homogeneous spherical shells. We will denote these sets by �j(0). Each of these consists of z±

0j
= ±3/2 and roots of the equation

(2.7)

For small p /= 0 the numbers z±
0j

generate the set �1(p). A system of l-1 spherical shells (soft layers), unconnected with one another, on
whose spherical surfaces the displacements are zero, correspond to the second limiting case. The spectrum of the limit problem will be
the sum of l-1 sets of eigenvalues. Each such set �i(0) consists of the roots of the equation

(2.8)

The roots of Eqs. (2.7) and (2.8) generate the set �2(p).
The following thorough solution corresponds to the eigenvalue z±

0 = ±3/2

(2.9)

Eigenvalues vk, corresponding to the eigenvalue of �1(p), have the following form

(2.10)
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Fig. 1.

(2.11)

The specific form of the eigenfunction, corresponding to the set �2(p), depends mainly on two factors: first, to which of the sets �2, j(p)
or �2, i(p) the eigenvalue belongs, and second, whether among the limit values of the eigenvalues there are multiple ones or not. For
example, if �iq ∈ �2, i(0) and there is a simple eigenvalue, the eigenfunction is localized in the corresponding soft layer. If �jq ∈ �2, j(0) and
there is a simple eigenvalue, the eigenfunction is localized in the corresponding hard layer and the soft layer surrounding it. We will call
this feature of the distribution of the eigenfunctions over the shell thickness “localization of the eigenforms”. In the case of multiple limit
eigenvalues, the distribution pattern of the eigenfunctions becomes more complex. As follows from (2.5), such a situation arises when, for
two or several layers, the ratios 	qs = q/
s become equal for different s. Note that for periodic structures 	qs are the same for hard and for
soft layers, and hence for such structures all the eigenforms corresponding to the set �2(p), are spread over the thickness.

We will illustrate the properties of the eigenfunctions by graphs obtained from the exact solution of the problem for a triplelayered
shell with the following values of the dimensionless parameters

On the graphs � = �−1 ln(r/r01) ∈ [0, 1] is the dimensionless radial coordinate.
In the case considered, the set �1(p) consists of only two eigenvalues z±

1 = ±1.386 and the eigenfunction f(�), shown in Fig. 1, corresponds
to them. The graphs in Fig. 2 illustrate the location of the eigenforms. The eigenfunctions corresponding to the eigenvalues z21 = 3.142i and
z22 = 6.283i are shown on the left of Fig. 2. These two forms are localized in the middle layer. The first part of Fig. 2 illustrates the localization
of the eigenfunction in the soft and inner hard layer (eigenvalues z11 = 3.140i and z12 = 6.283i). Note that the eigevalues z11and z21 differ
solely in the fourth decimal place, but the eigenforms corresponding to them are essentially different.

When describing the properties of the distribution of the eigenfunctions one must add the word “as a rule”, since our analysis shows
that deviations from the rules formulated are possible. Moreover, the distribution of the amplitude of the stresses �r� over the thickness
by no means repeats the distributions of the amplitudes of the displacements of the corresponding elementary solutions.

3. Analysis of the elementary solutions

We will now analyse the behaviour of the elementary solutions corresponding to the sets �1(p) and �2(p), which reduces to investigating
the behaviour of the solution of the equations

(3.1)

in the neighbourhood of the ends � = �. We will assume that �0 /= 0and �1 /= �.
If zs ∈ �1(p), it can be shown, using the asymptotic formulae (2.3) and (2.6), that the principal term of the asymptotic solution has the

form

(3.2)
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Fig. 2.

where

If follows from formula (3.2) that: 1) the elementary solutions corresponding to given eigenvalues attenuate exponentially with distance
from the ends, and 2) the rate of attenuation is determined by the position of the conic section and the ratio p/�.

If zs = zq, k ∈ �2(p), the principal term of the asymptotic solution of Eq. (3.1) has the form

(3.3)

The set of elementary solutions, corresponding to the set �1(p) (the set �2(p)), will be called a weak (strong) boundary layer.
Hence, as in the case of a laminated plate1 and a radially laminated cylinder,2–4 the complete solution (1.10) for a thin laminated spherical

shell with alternating hard and soft layers consists of the “thorough solution” u�0, which is determined by the torsional moment M, the
shear stresses �0and �1, applied to the boundary conical surfaces, the weak boundary layer and the strong boundary layer, which are
determined by the self-balanced part of the external load. In this case the weak boundary layer may have a considerable effect on the
internal stress–strain state of the shell, which indicates that the Saint-Venant principle in classical formulation11 is violated.

4. Construction of the applied theory of the torsion of a radially laminated sphere

It was shown in Refs 1-5, 11 that the lower part of the spectrum corresponds to a certain applied theory, which includes all the boundary
layers together with the thorough solutions the thorough solutions. The thorough solutions with a weak boundary layer can be given the
following mechanical interpretation.
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We will assume that the displacements of the points of the hard layer have the form

(4.1)

We will use the fact that the displacements in the soft layer in any section � = const are determined by the displacements of the adjacent
hard layers, i.e.,

This hypothesis enables the displacements in the soft layer to be represented in the form

(4.2)

According to relations (4.1) and (4.2) the stress–strain state in each hard and soft layer will be as follows:

(4.3)

The remaining components of the stress and strain tensors are equal to zero.
In order to obtain the boundary-value problem corresponding to the chosen stress–strain model, we will use the Legrange variational

principle7

(4.4)

where �� is the variation of the strain energy and �A is the variation of the work of the external forces. By equalities (4.3) we have

(4.5)

To determine �A we will use the fact that the following boundary conditions are specified on the conic sections

(4.6)

where

Assuming that �gj are independent variations (�gj = 0 when � = �1), taking relations (4.1)-(4.3) and (4.5) and (4.6) into account, we obtain
the following boundary-value problem from (4.4)

(4.7)

(4.8)

where

We will put

Substituting this expression into Eq. (4.7), we have

(4.9)

If we make the replacement z2 - 9/4 = 3p� here, we obtain algebraic system (2.4). Hence �0 = 0 (z±
0 = ±3/2) is an eigenvalue and the

eigenfunction X0 = (X0, . . ., X0)T corresponds to it. The eigfunction Xt = (Xt1, Xt3, . . ., Xtn) of system (4.9) satisfies the orthonormalization
condition

(4.10)
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Note that z±
0 = ±3/2 are eigenvalues of Eq. (4.9) and the corresponding eigenfunction has the form

The general solution of vector Eq. (4.7) can be represented in the form

(4.11)

(4.12)

By constructing the displacement field corresponding to the vector g0, we obtain from (4.1), (4.2) and (4.12)

i.e., this particular solution is completely equivalent to the thorough solution.
The distribution of the displacements over the radius, corresponding to zt /= ± 3/2, is given by (2.11), in complete agreement with

hypotheses (4.1) and (4.2).
We determine the constants A0, B0, At and Bt from boundary conditions (4.8). Substituting expression (4.11) into conditions (4.8) and

using orthagonality condition (4.10), we obtain

Here

As follows from relations (4.3), in the approximate model considered here the soft layers play the role of a Winkler foundation, operating
under shear.

The results described, and also the results of investigations for laminated plates with alternating hard and soft layers,12 indicate that
the most adequate applied theory for similar structural components is a theory based on the following hypotheses: 1) the Kirchhoff–Love
hypothesis for rigid layers, and 2) the Winkler hypothesis on shear and transverse compression for soft layers. Moreover, within the
framework of this theory for certain boundary conditions one can obtain the stress–strain state corresponding to the hypothesis of a
common normal for the whole packet.

References

1. Ustinov Yu A. The structure of the boundary layer in laminated plates. Dokl Akad Nauk SSSR 1976;229(2):325–8.
2. Akhmedov NK, Ustinov Yu A. The Saint-Venant principle in the problem of the torsion of a laminated cylinder. Prikl Mat Mekh 1988;52(2):264–8.
3. Akhmedov NK, Ustinov Yu A. Analysis of the structure of the boundary layer in a laminated cylinder. Izv Akad Nauk AzerbSSSR Ser Fiz-tekh Mat Nauk 1989;1:14–8.
4. Akhmedov NK. Analysis of the boundary layer in the axisymmetric problem of the theory of elasticity for a radially multilayered cylinder and the propagation of

axisymmetric waves. Prikl Mat Mekh 1997;61(5):863–72.
5. Akhmedov NK, Ustinov Yu A. Torsional oscillations and waves in a multilayered cylinder. Izv Akad Nauk SSSR MTT 1991;2:92–8.
6. Boyev NV, Ustinov Yu A. The spatial stress–strain state of a triple-layered spherical shell. Izv Akad Nauk SSSR MTT 1985;3:136–43.
7. Lurie AI. Theory of Elasticity. Berlin: Springer; 2005.
8. Bateman H, Erdelyi A. Higher Transcendental Functions. New York: McGraw-Hill; 1953.
9. Kolmogorov AN, Fomin SV. Elements of the Theory of Functions and Functional Analysis. Moscow: New York: Dover; 1999.

10. Dunford N. Linear Operators. Pt 1. General Theory. New York: Intersci, 1958.
11. Ustinov Yu A. Saint-Venant Problems for Pseudocylinders. Moscow: Fizmatlit; 2003.
12. Ustinov Yu A. The Mathematical Theory of Transversely Non-uniform Plates. Rostov-on-Don: OOO TsVVR; 2006.

Translated by R.C.G.


	Analysis of the structure of the boundary layer in the problem of the torsion of a laminated spherical shell
	Formulation of the boundary-value problem for a radially non-uniform spherical layer
	Analysis of the eigenvalue problem for a radially laminated sphere
	Analysis of the elementary solutions
	Construction of the applied theory of the torsion of a radially laminated sphere
	References


